Peptidergic and muscarinic excitation at amphibian sympathetic synapses.
نویسندگان
چکیده
A single-electrode voltage clamp was used to study the slow muscarinic and late slow peptidergic excitatory post-synaptic currents (e.p.s.c.s) in B cells of the paravertebral sympathetic ganglia of the bull-frog. Conductance decreases were measured during peptidergic e.p.s.c.s in nearly all cells at clamped potentials near the resting level. In about half of the cells the size of the peptidergic e.p.s.c.s increased with hyperpolarization and in some of these cells conductance increases were found at hyperpolarized levels. In the remaining cells conductance decreases occurred at all levels of membrane potential tested, and in a few of these the polarity of the e.p.s.c.s reversed at hyperpolarized potentials. A similar diversity was observed among muscarinic e.p.s.c.s. At least two simple ionic mechanisms are required to explain the heterogeneous voltage dependencies observed: a conductance decrease primarily to K+ that dominates at depolarized potentials and a conductance increase to other ions that is more prominent at hyperpolarized potentials. The proportion of these two mechanisms appears to differ among B cells. The two slow e.p.s.c.s recorded in the same neurone had the same voltage dependence and were accompanied by the same conductance changes in each of eight cells despite differences between cells. The muscarinic e.p.s.c. was reduced during the peptidergic e.p.s.c. in each of twenty-five neurones tested over a range of membrane potentials. Externally-applied luteinizing hormone releasing hormone (LHRH) produced currents with the same voltage dependence and conductance changes as the nerve-evoked peptidergic e.p.s.c. in each of fifteen cells tested. Bethanechol, a muscarinic agonist, and LHRH produced currents with the same voltage dependence and conductance changes in each of the twelve cells studied. In several cells a saturating response to a prolonged application of LHRH completely occluded the response to bethanechol, and vice versa. Slow currents were recorded from dissociated cell bodies in response to bethanechol and LHRH; these responses exhibited the same diversity of voltage dependence and conductance changes as was observed in intact ganglia. Activation of muscarinic and peptidergic receptors may control shared ionic mechanisms in single ganglion cells.
منابع مشابه
Excitatory muscarinic modulation strengthens virtual nicotinic synapses on sympathetic neurons and thereby enhances synaptic gain.
Acetylcholine excites many neuronal types by binding to postsynaptic m1-muscarinic receptors that signal to ion channels through the G(q/11) protein. To investigate the functional significance of this metabotropic pathway in sympathetic ganglia, we studied how muscarinic excitation modulated the integration of virtual nicotinic excitatory postsynaptic potentials (EPSPs) created in dissociated b...
متن کاملEstimating use-dependent synaptic gain in autonomic ganglia by computational simulation and dynamic-clamp analysis.
Biological gain mechanisms regulate the sensitivity and dynamics of signaling pathways at the systemic, cellular, and molecular levels. In the sympathetic nervous system, gain in sensory-motor feedback loops is essential for homeostatic regulation of blood pressure and body temperature. This study shows how synaptic convergence and plasticity can interact to generate synaptic gain in autonomic ...
متن کاملSynergistic effects of muscarinic agonists and secretin or vasoactive intestinal peptide on the regulation of tyrosine hydroxylase activity in sympathetic neurons.
Cholinergic agonists and certain peptides of the glucagon-secretin family acutely increase tyrosine hydroxylase activity in the superior cervical ganglion in vitro. The present study was designed to investigate possible interactions between these two classes of agonists in regulating catecholamine biosynthesis. Synergistic effects were found between carbachol and either secretin or vasoactive i...
متن کاملSecondary nicotinic synapses on sympathetic B neurons and their putative role in ganglionic amplification of activity.
The strength and number of nicotinic synapses that converge on secretomotor B neurons were assessed in the bullfrog by recording intracellularly from isolated preparations of paravertebral sympathetic ganglia 9 and 10. One input to every B neuron invariably produced a suprathreshold EPSP and was defined as the primary nicotinic synapse. In addition, 93% of the cells received one to four subthre...
متن کاملSlow synaptic responses in autonomic ganglia and the pursuit of a peptidergic transmitter.
SUMMARY This account deals with studies of slow synaptic potentials, a new pep-tidergic transmitter, and integrative mechanisms at synapses in vertebrate autonomic ganglia. In neurones of the cardiac parasympathetic ganglia of the mudpuppy (Necturus maculosus) both rapid excitatory and slow inhibitory synaptic potentials interact. The same transmitter, acetylcholine (ACh), causes in individual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 341 شماره
صفحات -
تاریخ انتشار 1983